
__________________________________________________ 
[ T: Theorem ] 
Search > Uninformed 
[ Fringe: , Expanded: , ] 
[ N.=Node I=Implementation ] 
BFS 
- Expands Shallowest unexpanded N. 
- ( I: put children of the Expanded N. at the end of the fringe ) 
- Complete: Yes (if b is finite) 
- Optimal: No in General (Yes if Step Cost is the same) 
- Time: 1+b+b^2+...b^d = O(b^d), expontnl 
- Space: O(b^d), (keeps every node in memory) 
Uniform Cost (UCS) 
- Expands Least-Cost Unexpanded N, g(n) 
- ( I: insert nodes in the fringe in order of increasing path cost From the 

root ) 
- Complete: Yes, if step cost > 0 
- Optimal: Yes 
- Time & Space:  

#N. with g≤cost of Optimal Soln O(b^d), (depends on path costs, not 
depths, difficult to caterize in terms of b, d) 

- UCS = BFS, when g(n)=depth(n) 
DFS 
- Expands Deepest Unexpanded N 
- ( I: insert successors at front of fringe ) 
- Complete: No, fails in infinite-depth spaces (i.e. m= ∞) 
- Optimal: No 
- Time: 1+b+b^2+...b^m = O(b^m), (higher than BFS, as M>>d (m=max 

depth, d=least cost soln path) ) 
- Space: O(bm), linear, excellent. 
Depth Limited Search 
- DFS w/ depth limit l 
- Complete: No in general, Yes in finite spc. 
- Optimal: No 
- Time: 1+b^2+...b^l= O(b^l) (as BFS) 
- Space: O(bl) (as DFS) 
Iterative Deepening (IDS) 
- Expands deepest unexpanded node within level l. 
- Complete: Yes (as BFS) 
- Optimal: Yes, if step cost=1 (as BFS) 
- Time: O(b^d) (as BFS) 
- Space: O(bd), linear (as DFS) 
- ( can be modified to explore uniform-cost tree ) 
__________________________________________________ 
Search > Informed (heuristic) 
(+ve over uninformed, Knows if a non-goal node > another, typically more 
efficient ) 
[ Best First Search Algorithms : Expands the most desirable unexpanded 
node] 
[ N=Node, g(n)=pathCost, h(n)=heuristic ] 
Greedy 
- Expands N. with smallest h(n). 
- Complete: Yes, in finite space. Fails in ∞ space (+ can get stuck in loops) 
- Optimal: No. 
- Time: O(b^m), but good heurstic can Improve lots. 
- Space: O(b^m), keeps every node in memory 
- Greedy=BFS, h(n) = depth(n), ties+ L}R 
- Greedy=DFS, h(n)=-depth(n), ties+ deepest 1st. 
- Greedy=UCS, h(n)=g(n) 
A* (Tree Search) 
- Expands N. with smallest f(n)=g(n)+h(n) 
- T: If h is an admissible heuristic, than A* is Complete And Optimal. (only 

w/ Tree S.) 
- T: If h is consistent, than A* is Optimally Efficient, among all optimal 

search algorithms. (always true ^v) (It will not revisit states (as in graph 
search) ). 

- Complete: Yes, unless there are ∞’ly many nodes with f≤f(G), G–Optimal 
Goal State 

- Optimal: Yes, with admissible heuristic 
- Time: O(b*^d),exponential, b*=effective branching factor 
- Space: Exponential, keeps all nodes in memory. 
- [ Both Time&Space are probs for A*, typically running out of SPACE b4 

time]  
May be better to settle for a non-admissible h that works well even 
though completeness and optimality are no longer guaranteed. Simpler, 
faster h may be better even though more N.s expan+. 

- A*=UCS, if h(n)=0 for all N. 
A* (Graph Search) 
- If h is admissible, Complete & Optimal, if revisting repeated (:||) states 

allowed (reopening closed N.s), else not optimal. 
- If h is Consistent, we avoid :|| states. 
- Enforced Consistency, using ‘PathMax’: set child’s f value to parent’s f 

value. 
( If done as we search, may not solve problem of reopening N.s from 
Closed.  
Better to ensure before search starts that h(n) is consistent ). 

Heuristics ( h(n) ) 
- Admissible h(n) are optimistic (smaller than true cost). e.g. SLD. 
- Dominance, when an Admissible Heuristic is better than another 

admissible one. A better estimate of true $ to G, and expanding fewer 
nodes in A*. 

- Inventing, h(n)’s by creating for a relaxed version of prolem (1 w/ less 
restrictions on the actions) 
[ T: $ of an optimal soln to a Relaxed problem is an Admisible h(n) for the 
Original problem. ] 

- (composite heuristics h(n)=max{h1(n),h2(n)...} are admissible, good to 
use when there’s a bunch of h(n), none dominating one another, 
composite will Dominate.) 

- Consistent (monotonic) Heurisic, if all such pairs in the search graph 
satisfy the triangle inequality: 
[ h(ni),par. ≤ cost(ni,nj)+h(nj),chi. for all n ]  
• f(nj),child ≥ f(ni),parent : f is non-decreasing along any path 

- ( Admissible ( Consistent ) ) !!!!!!!!!!!!!!!

__________________________________________________ 
Local Search Algorithms 
(Optimisation Problems) 
Hill-Climbing 
- Finds closest local min.imum / max.imum. (may not be global) 
- Soln found depends on Initial State: 

Can run several times starting from ∂ rand. points. 
- Plateus: (random walk - no change in v, wander endlessly, revisiting prev. 

N.s):  
Can keep track of # of times v is the same and don’t allow revisitng of 
nodes w/ same v. 

- Ridges: (cur. local max. not good ‘nuff): 
Can combine 2/+ moves in a macro, or allow limited # of look-ahead 
search 

Beam Search 
- Keeps track of k BEST states (not 1) 
- (• 2 vrsns: 1. start w/ 1 given state OR 2. k randomly generated states 

• At each iteration (lvl): gen.erate all successors of all k states 
• If any one is a goal state, stop; else select k best successors and 
continue. ) 

$  
- Can be used w/ A*, +ve: memory efficieny, -ve: !complete, !optimal 

- Variations: Keep only nodes that are at most €(beam width) worse than 
best N. 

Simulated Annealing 
- (similar to hill climbing, but selects random successor) 
- (• select initial state s. set cur. N. to s  

• Randomly select m, one of N.’s succssrs 
• if v(m) > v(n), n=m //accept m  
  else n=m w/ small probability  
  //accept m w/ small prob.  
• Anneal T, • Repeat xtimes/goodnuff ) 

- Probability: P = e^( (v(m)-v(n))/T )  
i.e. bad move v(n)>v(m) asuming looking for min., P decreases expo. w/ 
badness of move. 

- T decreases, anneals, w/ time, e.g. T*=.8 
- Thrm: If schedule lowers T slowly enough, algorithm will find global 

optimum. Complete & Optimal, given a long enough cooling schedule. 
- Difficult to set “slowly enough” (T). 
Genetic Algorithms 
- (• Select best individuals, from fitness f() 

• CrossOver, about an init random point 
• Mutate, random change of bits) 

- Success depends on representation (encoding) 
- !complete, !optimal 
__________________________________________________ 
Games 
[ Deterministic vs Chance ] 
[ Perfect vs Imperfect ] 
[ Zero-Sum vs Non-0-∑ : (1 P’s gain is another’s loss) ] 
(Processes forward, !backward from goal, cause often too many goal 
states. + if goal state too far, will not provide any useful info on termination 
otherwise) 
MinMax Algorithm 
- Perfect, Deterministic, Assumes both P’s (Max, Min) play optimally 

$  
- Only O(bd) nodes need be kept in memory at a time 
- If Min doesn’t play optimally, Max will do even better. 
- Implemented as DFS 
- Assumptions: branching factor b, all terminal Nodes ad depth d. 
- Optimal: Yes. 
- Time: O(b^m) as in DFS – main Problem. 
- Space: O(bm) as in DFS 
Alpha Beta Pruning 

$  

$  
- Pruning doesn’t effect final result 
- Worst Case: No Pruning: O(b^d) 
- Best Case: Perfect Ordering O(b^(d/2)) 
Imperfect 
[ Both MinMax & AlphaBeta require too much time ] 
i.e. Heuristic Evaluation at leaf nodes. 
- Probs: Horizon Effect (hidden pitfalls) 

- - Soln: Evaluation f() should be applied onlty to positions that are 
quiescent, unlikely to change extremely in near future. + Secondary 
Search, extending search to make sure there’s no hidden pitfall. 

ExpectMinMiMax 
(Non-deterministic Games) 
- Time: O(b^m . n^m) n=# of distinct dice rolls. 

$  
__________________________________________________ 
Supervised Learning 
( Classification - categorical, 
Regression - Numeric ) 

--------------------------- 
NEAREST NEIGHBOUR 
- (or distance/instance-based learning) 
- An eg. of Lazy Learning, stores all training eg.s + doesn’t build a 

classifier until new eg. needs to be classified. - Opposite to Eager 
learning (constructing classifier before recieving new eg.s, 
like1R,DT,NB..) 

- Lazy classifiers are Faster at training(=memorizing), but Slower at 
classification. 

- Nearest determined by distance 

$  
- Need for Normalization, as when calculating distances between 2 

examples, the effect of the attributes with smaller scale will be less 
significan than those larger. i.e. Normalize (between 0 and 1) 

- Training=Fast, no model built, just storing. 
- Classification>Lookup: O(mn), m training examples w/ dimensionality n. 
- Memory: O(mn), need remember each eg 
- BAD for large datasets, slow. 
K-Nearest Neighbour 
- k majority voting 
- Very Sensitive to value of k, general rule: [ k ≤ sqrt(#training_egs) ] 
- Also usable w/ numeric prediction (regression) by averaging values. 
- Distance for Nominal Attributes: 

0 - ∂ the same, 1 otherwise 
- for Missing Values:  

0 - both same & NON-MISSING, else 1 
(if numeric, d=max(v, 1.0-v)) 

- d((red, new, ?, ?, ?),(blue, new, ?, 0.3, 0.8)) = 1 + 0 + 1 + 0.7 + 0.8 
- Variation: Weighted Nearest Neighbor 
- Closer neighbors count more than distant neighbours. Instead of k, all 

training egs. 
- Weight Contribution based off distance to new example: 

$ -ve: slower algorithm 
- Curse of Dimensionality: NN great in low dimensions (up to 6), but 

become ineffective as dimensionality increases. As more examples are 
far from one another, and close to the boundaries. (Notion of nearness 
becomes ineffective in high-dim space) 
Soln: Feature selection (attrs) to reduce dimensionality. 

- Produces arbitarially shaped decision boundary defined by a subset of 
the Voronoi edges. 

- Sensitive to Noise 
- Standard algorithm makes predictions based on LOCAL info. 1R, DT, 

NNs, try to find a GLOBAL model that fits training set. 
--------------------------- 

1-RULE 
- For each attribute value makes rule by majority class. Calculates error 

rate of rules. Chooses rule w/ smallest error rate. 
- Missing Values: 

Treated as another attribute Value 
- Nominal Attributes are discretized to nominal. - May lead to overfitting 

due to noise in data - Soln: impose min num of egs of majority class in 
each partition, merge. 

- Simple, Computationally Cheap. 
--------------------------- 

NAIVE BAYES 
(Statistical-Based Classification) 
- P(H|E) = P(E|H).P(H) / P(E) 
- P(yes|E)= P(E1|yes).P(E2|yes).P(yes)/P(E) 

• (all P(Ex|yes) have same denominator) 
- Assumes attributes are equally important and independent of one 

another. 
- Laplace Correction to handle Zero-Numerators. (add 1/Num_Attrs to all 

attrs.) 

 $  
- (note, in tut examples, only the value is ∂d, not cousins ) 
- Missing Nominal Values: Ommit Value from P(yes|E) and P(no|E) 

counts. 
- If Numeric: Calc. Probability Distribution using the Probability Densitiy 

Function (assuming normal distribution). µ=mean, Ó=sd. 

$ $  
- +ves: • simple,  

• Excellent Computational Complexity: Requires 1 scan of the training 
data to calculate statisics (for both nominal & continuous attributes 
assuming normal distribution). O(pk), p=#training_egs, 
k=valued_attributes 
• Robust to isolate noise points (avgd out) 

- -ves: • Correlated attributes reduce power (violation of independence 
assumption) - Soln: feature selection b4hand. 
• many numeric features not normally distrubted - Soln: other types of 
distributions /transform attribute to normally distributed one /discretize 
data first. 

__________________________________________________ 
Evaluating Classifier 
- Holdout Procedure - split data into 2 independent sets;Training & Test 

(~2/3,1/3) 
- Accuracy (Success Rate) = 1.0 - Error Rate 
- Validation Set (for DTs, NNs) - Classifier built from Training Set, - Tuned 

w/ Validation Set, Evaluated w/ Test Set. 
• DTs - training set used to build tree, validation set used to prune, test to 
eval  
• NNs - validation set used to stop training, prevent overtaining. 

- Prob: egs in training set may not be representative of all classes. 
Soln: Stratification, ensures each class is represented w/ ~= proportions 
in both sets. 

- Holdout more reliable by repeating (Repeated Holdout Method) - which 
can be improved by ensuring Test sets don’t overlap - Cross Validation. 

- Leave-One-Out Cross Validation - n-fold cross-validation, where 
n=#Egs in data set. 
• +ve: greates possible amount of data used, deterministic procedure. 
• -ve: high computation cost 
i.e. more useful for small data sets 

Comparing Classifiers 

!  

!  
Confusion Matrix 
(remember accuracy=(tp+tn)/(tp+tn+fp+fn)) 

$  

Where retrieved=#retrievedDocs, relevant=#relDocs 
Precision = (R+R)/Retrieved 
Recall = (R+R)/Relevant !
Inductive Learning 
- Supervised Learning is Inductive Learning. 
- Induction: inducing the universal from the particular. 
- We can generate many hypothese h, the set of all possible h form the 

hypothesis space H, a good h will generalize well (i.e. predict new egs 
correctly). 

- Choice of H important (eg sin.f() vs polyn). 
- Empirical Evaluation: - best thing we can do. (Test data). !!!
__________________________________________________ 
DECISION TREES 
- ( top-down recursive divide-and-conquer ) 
- Growing the tree: hill climbing search guided by information gain. 
- Can represent any boolean function. 
- Compact Decision tree with most pure (high entropy) attributes. Entropy 

is measured in bits. For binary classification; value:0.5=1bit, value:
0or1=0bit. 

- Entropy H(Y) measures: • the disorder of a set of training egs w/ respect 
to class Y. • shows the amount of surprise of the receiver by the answer Y 
based on probability of answers • the smallest # of bits per symbol (on 
avg) needed to transmit a stream of symbols drawn from Y’s distribution. 

- Information Gain is the expected reduction in entropy caused by the 
partitioning of the set of examples using that attribute. 

$  
- ( DT: The best attribute has Highest Gain ) 
- Overfitting, due to DTs growing each branch deeply to perfectly classify, 

coupled with noise in training data, +/or small training set. Soln: Pre/Post-
Pruning. 

- Stop Pruning: Estimate accuracy w/ validation set (acts as safety net), 
however tree is built on less data. 

- Post-Pruning > Tree Pruning: 
• Sub-Tree Replacement:  
 - start from leaves+work to root.  

 - $  
 - continue iteratively till further pruning=harmful  
• Sub-Tree Raising 
 - potentially time consuming operation,  
   restricted to raising the sub-tree of most popular branch. 



- Post-Pruning > Rule Pruning: 
• Grow Tree • Convert tree to equivalent set of rules by creating 1 rule 
per path (if statement) • Prune each rule by removing any pre-conditions 
that result in improving estimated accuracy • Sort pruned rules by 
estimated accuracy, consider in this sequence when classifying 
subsequent instances. 
• Converting DT to Rules Be4 Pruning: Provides bigger flexibility, when 
trees are pruned; can only remove node completely or retain. when rules 
are pruned there are less restrictions: pre-conditions, not nodes, are 
removed. each branch in tree (i.e. each rule) treated separately. removes 
distinction between attribute tests that occur near the root of the tree and 
those near the leeves. 
• +ve > trees, easier to read. 

- Numerical attributes need discretization, in DTs we’re restricted to binary 
split. 

- Problem: if an attribute is highly-branchng then likely selected by 
Information Gain, can lead to Overfitting.  
Soln: Gain Ration, a modification of the Gain that reduces its bias 
towards highly branching attributes.  

$  
- Missing values: handled by • unique value • A(x)=most common value 

among training egs at n w/ class(x) • sample fractioning strategy - assign 
probability to each possible value of A, calc prob.s, use frequencies of 
values of A among examples at n 

- Attributes w/ Different Costs, Incorporating cost in Gain (penalizing attrs 
w/ high cost) 

- $  
- Efficient:  

• Cost of Building tree O(mnlogn), n-instances and m attributes. 
• Cost of pruning tree w/ sub-tree replacement O(n) 
• Cost of pruning by subtree lifting  
O(n(logn)^2) 
• ∑ (build+prune): O(mnlogn)+O(n(logn)^2) 

- Resulting Hypthoese Easy to interpret by humans if DT not too big. 
__________________________________________________ 
NEURAL NETWORKS 
( Perceptron - StepTransferF(), Forms linear Decision Boundary ) 

$  

$  
- Limitations: • Binary Output • if training examples are linearly separable, 

guarantees a soln in finite # of steps.  
• Doesn’t try to find ‘optimal’ line. 

- (The weight vector is orgthoganal to the decision boundary. ) 
__________________________________________________ 
BACKPROPAGATION ALGORITHM 
- (Powerful, Can learn Non-Linear Decision Boundaries, but hard to Tune) 
- (Uses Steepest descent algorithm for minimizing the mean square error) 
- Multi-Layer NNs trained w/ backpropagation popular. 
- To learn input-output (I/O) mapping - Error F() formulated (eg. ∑ of 

squared errors between target & actual output) & use a learning rule that 
Minimizes this error. 

$  
- a Feedforward netowrk, a Fully conected network (typically), weights 

initialized to small rand. values. 

$  !!

!
- Numerical data requires no Encoding, unlike nominal - typically binary 

encoded. 
- Output Encoding: 

$  
- Heuristic to start w/ : 1 hidden layer w/ n hidden neurons, n=(inputs
+ouput_nurons)/2 
- BackPropagation (BP) adjusts weights backwards by propagatong the 

weight ∂. 
- An optimization search (hill climbing) in the weight space. Using Steepest 

Gradient Descent, ∏ learning rate, definies step (quickness moving 
downhill). May not find global min. (local instead).  

- Can adjust weights by: 1. Incremental - after each training example is 
applied - liked.requires less space. 2.Batch - weights adjusted once all 
training examples are applied and a total error calculated. 

$  

$  

$  
- Every Boolean f() of incputs can be represented by network with a single 

hidden layer. 
- Any continuous f() can be approximated w/ arbitrary small error by a 

network w/ 1 hidden layer. Any f() (inc. discontinuous) ~‘able to arbitrary 
small error by a network w/ 2 hidden layers. 

- Overfitting, occurs w/ Noise, OR when # of free (trainable) params is 
bigger than # of training examples. OR network been trained too long. 
Soln: • Use network that’s “just large enuff”, • network shouldn’t have 
more free params than there are training egs. 
• Validation Set can be used to STOP traning if error increases for a pre-
specified # of iterations, the weights,bias’ at the min. are returned. 
• Prob w/ Validation Sets: Small data sets. Soln 2x: K-Fold Cross 
Validation, get mean number of optimum epochs. Final Run: train 
network on ep_mean. 

- With Gradient Descent:  
Small Learning Rate = slow Convergence. 
Large Learning Rate = oscillation, overshooting of minimum. Momentum 
used to stabilize the algorithm. 

$  
- (All layers have bias’ !input) 
- (BP iterates till it minimizes the sum of the squared errors of the output 

values over all training examples). !!!!!

!
__________________________________________________ 
Support Vector Machines 
- 1. Maximize margin. 
- 2. Transform data into a higher dimensional space where it’s 

more likely to be linearly separable 
( not to high tho, overfitting danger ) 

- 3. Kernel Trick - Do calculations in the original, not the new 
higher di. space. 

        $  
( “Kernel function of the new vector and the support vectors”, instead of dot 
product ) 
(Mercer’s T: restricts the class of usable f()s K) 
- Scales well in high dimensions. 
- Multi-Class problems need to be Transformed to 2 class 

problems. (Slows them down). 
- Compared to Perceptrons (‘linear only’), and 

Backpopragation NNs (‘tuning,localMinima’) (which SVM can 
reduce too), SVM’s: are relatively efficient training algorithms 
that can learn non-linear decision boundaries. 

- SVM: an optimization problem using Lagrange multipliers (/\) 
to maximize the  margin of the decision boundary.  

- Margin Width: d=2/||w|| 
- Linear Constraint: $  

$  

$  
w: the optimal decision boundary: 

 $  
- Soft Margin: allows some misclassifications. Tradeoff 

between margin width & #misclassifications. Soln is same as 
w/ hard margins but there is an upper bound C on values of /
\s. 

__________________________________________________ 
Ensemble of Classifiers 
[Works when individual classifiers are highly accurate and diverse 
(uncorrelated, don’t make same mistake. Generated by manipulating ...), & 
when base classifiers are good ‘nuff i.e. better than random guessing] 
[Enlarges Hypothesis Space] 
 | 
(Manipulating Training Data) 
Bagging “Bootstrap Aggregation” 
- Majority Vote 
- • Creates M Bootstrap samples • each sample used to build a classifier • 

classify a new eg by getting majority vote 
- Effective for Unstable classifiers, (small ∂s in the training set results in 

large ∂s in predictions, e.g. DTs, Neural Networks). 
May slightly decay performance of stable classifiers (e.g. k-nn). 

- Applicable to regression (votes avg’d) 
Boosting 
- Combo of weighted votes 
- • each training weight has associated weight • higher the weight, more 

imporant the eg during training. 
- • training eg weights init = 1 • generate classifier • correctly classified egs 

decrease in weight + vice versa • repeat • finally combine the M 
hypothese, each weighed according to performance on training set 

- Adaboost - typically performs better than individual classes.  
- If base learning algorithm is a weak learning algorithm, then AdaBoost 
will return a hypothesis that classifies the Training data Perfectly for 
Large enough M. 

- Boosting fails if indi. classifiers 2 ‘complex’ 
- Boosting allows building a powerful combined classifier from Very simple 

ones, eg. Simple DTs generated by 1R. 
Bagging vs Boosting 
- Similarities: • Use voting (for classification) and averaging (for prediction) 

to combine the outputs of the individual learners. • Combimes models of 
the Same Type 

- Differences: • Bagging builds individual models separately, Boosting 
builds them iteratively. • Bagging weighs opinions equally, Boosting 
weights by performance. 

- Boosting, typically more Accurate. 
- but Boosting more sensitive to Noise. 
 | 
(Manipulating Attributes) 
Random Forest 
- Bagging & Random selection of features 

(this generates diversity, reducing correlation) 
- Proven that RF does not overfit. 
- RF Faster than Adaboost, gives comparable accuracy results. 
 | 
(Manipulating Learning Algorithm) 
- Same learning algorithms applied to same dataset but w/ ∂ params (e.g. 

NNs w/ ∂ architecture / params ). Train them on same training data to 
create M classifiers, which can output a Majority Vote. 

 | 
(Using a Meta-Learner) 
Stacking 
- Instead of voting, uses a (level-1) metalearner to learn which (level-0) 

base classifiers are reliable. 
- Seperates training data into training, validation sets, trains level-0 

classifiers, applies validation set to classifiers and use the predictions to 
build training data for level-1 model above  

-  - could use cross validation instead of training & validation sets. Slow, 
but allows level-0 full-use of data.  

- level-0 base learners do most work, level-1 can be just a simple 
classifier. 

- Can be applied to numeric predictions, instead of a class-value a numeric 
target value is attached to level-1 training eg !!!!!!!!

!
__________________________________________________ 
Unsupervised > Clustering 
(don’t know class labels, may not know #classes, want to group similar egs) 
[ Single link (MIN), Complete link (MAX), Average link (avg distance 
between each element in one cluster to each ele. in other) Centroid, 
Medoid ] 
{ Good Clustering produces: High Cohesion. High Separation. as measured 
by a distance function such as Davies-Boulding index (prefferably small) } 

$  
[ Types: • Partitional - creates one set of clusters • Hierarchical • Density-
based • Model-Based (generative) • Fuzzy Clustring] 
K-Means Clustering Algorithm 
- Requires k, #clusters, to be specified. 
- • select K points as initial centroids • (Repeat: • form K clusters based on 

closest centroid • recompute centroid of each cluster) Until: Centroids 
don’t ∂ 

- Issues: • data should be normalized 
• nominal data needs to ∂ to numeric 
• #epochs for convergence typically much smaller than #points, 
converges quickly :)  
• Stopping Criterion usually e.g. <1%, not ==. • SENSITIVE to choice of 
Initial Seeds (could run several times w/ ∂ initial centroids) 

- Not sensitive to order of input egs :) 
- Doesn’t work well for clusters w/ non-spherical / non-convex shapes. 
- Doesn’t work well w/ data containing Outliners (Soln: preprocess, cut 

outliers) 
- Space: Modest; O( (m+k)n ), m=#egs, n=#attributes, k=#clusters 
- Time: Expensive; O(tkmn), t=#iterations 
- Not Practical for Large datasets. 
- Can be viewed as an optimization problem; find k clusters that minimize 

SSE. 
- May find local minimum instead of global. 
- Variations: • improving chances of finding global min. ; ∂ ways to 

initialize., allow splitting&merging of clutsers. 
• can be used for hierarchical clustering, w/ k=2 & recursively :|| w/ each 
cluster. 

K-medoids 
- Use medoid instead of cluster means. 
- Reduces sensitivity to outliers 

$  
- Computationally expensive, not suitable for large databases: Time: 

O(n(n-k)), Space:(O(n^2)-needs proximity matrix). 
- Doesn’t depend on order of examples. 
- Can be used when oly Distances are given and not raw data. 
Nearest Neighbor Clustering Algorithm 
- 1 pass algorithm, Partitional algorithm. 
- Sensitive to Input Order. 
- Puts ite,s in cluster of itself, single-link distance between item and new 

cluster, threshold t determines merging/creation. 
- Space & Time: O(n^2), n=#items 

(Hierarchical Clustering) !  
- Suitable for domains w/ natural nesting relationships between clusters 
- Computationally Expensive, limiting applicability to high dimensional data 

:( 
Space: O(n^2), n=#items, to store proximity distance matrix & 
dendrogram. 
Time: O(n^3), n levels, at each of them, n^2 proximity matrix must be 
searched & updated (reducable to O(n^2 .logn) if distances store in 
sorted list. 

- Not Incremental, assumes all data static. 
Aglomerative Clustering 
- bottom up, merges clusters iteratively (w/single-link (min) clustering) 
- • d=0 • compute proximity matrix • let each data pt be a cluster • 

(Increment d, merge clusters w/ dist ≤ d, update Proximity Matrix [DRAW] 
:|| ) 

- using Complete Link, is less sensitive to Noise and Outliers than Single 
Link. Generating more compact clusters. 

Divisive Clustering 
- top-down, splits clutster iteratively. reverse of agglomerative, less 

popular. 


